
9
DATA REGIONALIZATION

A scene as serene and innocuous as clouds rolling across a clear, crisp blue sky

offers a useful analogy for regarding the concept of data regionalization. Like

the clouds crossing the sky, data regions float across the data grid plane (DGP).

Like the droplets of water held within the clouds, the data within a data region

can be gathered from a variety of sources and are now united to form this region

of ever-changing size and shape as it traverses across the data grid plane. And, as

with the effect of atmospheric conditions on our vision of a clear blue sky, the

data region continually adjusts to changing external factors, such as business

need, usage demand, overall data size, and performance requirements, so as not to

allow its data to fall to Earth.

Data region management policies for distribution, synchronization, and other

functions affect the region’s size, shape, and traversal in the data grid plane (see

Figure 9.1).

Other external forces play a hand. They include hardware, mean time between

failures, scheduling and routing of tasks (in the compute grid plane), time of day,

and cycling of available resources in the data region’s size, shape, and traversal

across the data grid plane. This complex interaction of forces is counterbalanced

by the data management policies of the data region, continually adjusting its charac-

teristics to keep itself in an optimal state to meet the supply–demand curves

imposed on it.

Leveraging this concept of the data region as condensation and the data grid

plane as the sky allows us to bridge to the physical implementation with the right

tools of analysis and mathematical modeling. All these affect data distribution

79

Distributed Data Management for Grid Computing, by Michael Di Stefano
Copyright# 2005 John Wiley & Sons, Inc.

and data synchronization policies, as well as other concrete data management pol-

icies involved in the proper access and management of a data region in the highly

distributed environment of grid computing.

WHAT ARE DATA REGIONS?

Traditional client/server data architectures defined a concept of multiply siloed

databases, or a data warehouse that contained the entire set of information required

to run a particular business. Applications built around this concept promulgated

this notion and themselves became associated with a set of information and a

particular business. As businesses grew, many different, and sometimes competing

silos were created to deal with different aspects of the business. In finance, the back

office and the front office tended to have similar information, but could rarely share.

Data grid architectures are designed to specifically decouple the location of particu-

lar data from the resources that use them. In order to accomplish this, the concept of

a data region needs to be defined. Once defined, the data region can be managed

through data management policies.

Data regions are defined as a logical organization of virtual resources that pro-

vide the storage necessary to house data. That storage and the virtual resource

that provides it are typically unspecified in terms of service level and locale. In

addition to virtual resources, regions have a set of management policies associated

with them. The data contained within a data region represent a logical grouping

independent of source.

DATA REGIONS IN TRADITIONAL TERMS

Data regions are similar to databases in traditional terms. Figure 9.2 illustrates this

relationship.

It is always best to establish a baseline that is grounded in concepts that most of us

are familiar with, a common knowledge that we can use to visualize and build on

when learning new concepts. In introducing data regions within a data grid, we

Data grid plane

Data region

at time t Data region
at time t + 2∆

Data region
at time t + ∆

Figure 9.1. Data regions in the data grid plane.

80 DATA REGIONALIZATION

will use relational data management as the baseline. This analogy is as functional as

it is visual; the traditional elements of data management need to be maintained and

expanded on when entering into a data grid environment:

. Logical Data Groupings. Data are logically grouped, typically aligned with a

business vertical. In the relational data management realm, this grouping is

by a database. In the case of the data grid, this grouping is a data region.

. Schema. The schema relates to the way data are organized within the database:

a definite structure organized in a logical grouping and aligned with the

business and data applications where data storage, retrieval, and updates are

applied to the database. In a relational database, the fundamental organization

for the schema is a table, a two-dimensional matrix of rows and columns.

Typically, databases contain many tables. [Note: Within a data region the

choice of data structure goes beyond the two-dimensional rows and columns

that constitute a table.] The fundamental structural elements for data schema

within a data region are dependent on the implementation of the data grid. It

is important to make clear that the data grid implementation is independent

of the underlying engine (i.e., file system or distributed cache; see

Figure 1.1). The engine defines the data grid’s ability to fulfill other QoS

levels, but imposes no limit on the kinds of data schema structures that can

be defined. Again referring back to Figure 1.1, this is purely a function of

Ordered structures

Events

Distributed procedures

Cross-structure

Data atom level

Data atom

Programmatic

string base

Tables

Triggers

Stored procedures

Intratable fields

Table/row level

Table joins

SQL

Schema

Events

Optimizations

Indexing

Locking

Relation

Query

Relational database Data grid region

Figure 9.2. Data regions in traditional terms.

DATA REGIONS IN TRADITIONAL TERMS 81

the data management layer and its implementation. Structures are dependent

only on the implementation of the data management layer and its support for

N-dimensional structures, including arrays, tables, matrices, and trees.

. Events. An event is an occurrence or happening at a single point in time and

space. In computer science, events trigger a change of state for an object or

system. Typically, a system’s state is defined by its data attributes. Program-

matic paradigms are based on the concept of events and form the basis for

event-based processing that drive straight-through processing (STP). In relation

to data management, an event triggers a change in state of an array, table, data-

base, or data region. Programmatic “event handlers” or “triggers” are registered

for a specific event and are invoked when that event occurs. A common use of

triggers in a relational database is to maintain referential data integrity

among the tables of the database. Triggers tie together or are set to a specific

event, such as the insertion or deletion of data to a table. When these events

occur, the triggers are programmed to make the required changes, such as inser-

tions, deletes, or updates to the other structures in the database or data region to

ensure data integrity. Events caused by triggers can in turn set other triggers

into motion; thus a chaining effect can take place. Data regions can extend

event handling by allowing systems external to the region to “register” interest

in data region events. The external systems can either be notified directly by

the data region or invoke an event handler registered by the external system

when an event, with its associated triggers, occurs.

. Optimizations. Data management systems support various optimization tools

for data access and update. One of the more common methods is the

precompiling of queries. In the case of the relational databases, SQL statements

are precompiled into procedures that are given well-known handles so that user

programs can invoke them directly. For example, when an application queries

the database, a certain amount of processing must be done by the database to

transform the SQL into executable code. If the query is frequently used by

one or more applications, it can be optimized within the database to eliminate

many of the preprocessing steps. This optimization improves the performance

of the database queries. In some implementations of relational databases, these

are called “stored procedures.” Similarly, procedures can be maintained within

the data grids and their associated data regions. However, given the nature of

the implementation of a data grid, the exact meaning of a stored procedure

can vary. For example, a data grid that is based on a distributed cache can dis-

tribute the precompiled procedures across all the nodes of the data region.

When invoked, the data grid can execute the “distributed stored procedure”

in parallel, each node processing it against its own set of data within that region.

. Indexing. Indexing is a way to gain faster access to atoms of data within the

database or data region. In the relational model, a column, or groups of

columns, within a table can be indexed in ascending or descending order.

The cost of creating and maintaining indexes is extra overhead for the data

management system. The amount of overhead is dependent on the design

82 DATA REGIONALIZATION

and implementation of the data management system. In the case of a relational

database, an index is an extra data structure that needs to be maintained each

time an indexed table is updated or changed. Indexing within a data region is

conceptually the same as that within the relational model; however, data

grids can support additional data structures, including arrays, tables, matrices,

and trees. Therefore, the exact implementation and benefit of indexing within

the data grids can vary greatly depending on specific data grid designs and

implementations.

. Locking. For a multiuser system, maintaining data integrity is essential, and

therefore locking is required. Locking data atoms assists in maintaining data

integrity when multiple users have permission to update and change data

within a database or data region. When updates, inserts, or deletions are per-

formed on a data set, it may be necessary to block others from accessing that

data until the data modifications are complete and committed. This process

of blocking access to data from other users when they are being changed is

called “locking.” Typically, the updating application “acquires” the lock

from the database before starting and then “releases” it when the operation is

completed. In a relational database, the level of data atom locking can be at

table level within the database or at a much finer level of granularity: the

row within a table. When row-level locking is employed, other users can

acquire locks on different rows of the same table without being blocked.

Thus users are not interfering with each other. On the other hand, locking

within a data region will take place at the data atom level. Therefore, the

finest atom of locking of a data structure is dependent on the type of data

structures supported by the data grid. When structures in a relational database

are mirrored in a data grid, the data grid must support the same locking features

and same level of granularity as those in a relational database. However, for

more complex structures, the granularity of data atom locking is dependent

on the data grid implementation.

. Relation. How are the various data structures and data atoms related to each

other? In the world of relational databases, where the fundamental schema is

a table—a two-dimensional structure of rows and columns—additional dimen-

sions can be created by joining tables based on common fields, allowing

relationships to be established between two or more tables. Within the data

region, relations between data structures can be as fine as the most basic data

atom joining a heterogeneous set of data structures offering more granular

flexibility. For example, trees can be joined to arrays that can be joined to

matrices. Depending on the implementations of the data grid, a single data

atom may be a member of multiple structures, thus providing the relation

between the structures.

. Query. Relational databases have standardized on structured query language

(SQL), a text-based query language. Within the data grids and data

regions there are fundamentally two ways to query data: (1) a string-based

query language similar to SQL and (2) a programmatic querying or filtering.

DATA REGIONS IN TRADITIONAL TERMS 83

Programmatic querying is a higher-level language such as Cþþ or Java, where

the query is done via a set of programmatic APIs. Early implementations of data

grids will support the programmatic query interface first. String-based query

languages for data grids are an area that today requires industry standardization

on exactly what the language syntax needs to be. This is primarily because

data grids can support a wide range of data structures and the most optimal

query language may not be SQL. Rather, it may be more of an XML-like

language, or a hybrid of SQL, Object SQL, and based on other theories.

Such standards are necessary, especially if the data grid is to succeed in the

commercial arena.

Data grid queries must support two types of functions: queries into user-defined data

structures and queries into the operational structures resulting from data

management. For data grids, the operational data include most of the same admin-

istrative data sets for users, entitlements, and logging. However, additional infor-

mation is needed for data-grid-specific data management features. The most

obvious is the support for data affinity, which is discussed later in this book. Statis-

tical information on each data atom is required to support data affinity, including

. The physical data location of each data atom and all its replicas

. Access patterns

. Movement patterns

Therefore, just as with relational database engines, administrative query support

is an integral part of the data grid system.

DATA MANAGEMENT IN A DATA GRID

As with many other solutions, data management is very important in the data grid;

the ability to define data management policies specific to each data grid region is

very powerful at implementation:

. Data Grid Resources. Many components or resources are required for the data

grid. A data grid resource includes the processors and storage associated with a

data grid (the nodes constituting the grid), and the data grid “daemon” that

monitors and manages the physical nodes of the data grid. The data grid

daemon tracks and records “metered information” describing the state of

each node of the data grid. Metered information includes details about the

memory layout, processor, and size of the CPUs of the grid’s nodes, local

node transaction/storage, and load sources. Together this information provides

the data grid normalized information that it uses to determine the proper

amount of resources required to efficiently and effectively service usage

demand.

84 DATA REGIONALIZATION

. Management Policies. Flexible data management policies are required.

The management policies are applied at region level, enabling a region to

behave similarly to a relational database instance. Management policies

for the regions include data distribution/data replication, synchronization,

and load/store. Each of these policies addresses a particular behavior of

the region. Data management policies include (1) data distribution, (2) data

replication, (3) synchronization, (4) data load and store, and (5) event notifi-

cation. The interrelationships between these policies are discussed in the

sections that follow.

For each of the data management policies listed above, we will express the key

parameters that define them. These expressions are not intended as a complete

expression of the respective policies, but simply as a basis on which to build insight

into their roles and interactions with each other and affect on the system as a whole.

As in Chapter 5, section entitled “Application Characteristics for Grid,” the

expression for an application is in equation form. For similar reasons—namely,

for the purpose of quickly developing multidimensional relationships among the

parameters and policies themselves—we will follow that notation here.

Data Distribution Policy

Regions contain collections of resources that manage data. Data associated with a

particular region can be distributed or replicated through a number of methods.

Distribution of data takes individual data “atoms,” associating them with a particular

resource and resource ownership of that data atom. Distributions of data “atoms”

include simple techniques such as round-robin, mathematical models (e.g., Gaussian

and Poisson distribution), and dynamic schemes based on real-time system beha-

viors. Each of these distributions results in a specific data topology:

. Round-Robin Distribution. Round-robin distribution is a simplistic distribution

scheme that distributes data “atoms” in a sequential mechanism. It does not

guarantee a particular distribution except if all the resources have exactly the

same capacity.

. Gaussian Distribution. Gaussian or normal distribution takes as its parameters

a central machine or machines, a standard deviation, and a set of distances,

and attempts to distribute most of the data in close proximity to the central

machine.

. Random (White Noise) Distribution. Data atoms are randomly distributed

across the data region.

. Poisson Distribution. Poisson or jump distribution uses parameters similar to

those of Gaussian distribution and in addition takes into account the probability

of jumps. It attempts to distribute the data within the proximity of a central

machine, but also adds the possibility of data “jumping” away from the central

machine on the basis of some probability algorithm.

DATA MANAGEMENT IN A DATA GRID 85

1. Dynamic-Data Movement Pattern Analysis. For efficiency reasons, a large

part of data distribution policy is aimed at minimizing data movement within a

data grid. Replication of a data atom across a data region to the physical nodes

where the data are accessed most often minimizes network traffic. There are numer-

ous methods for achieving this goal, one of which is to monitor data movement

within a data region and continually evaluate and redistribute the data according

to data access and usage patterns. This implies a continual feedback control loop

that evaluates the following:

. Input—data location, data request points, data movement, distance that data

travel on the network, frequency of data requests, and other parameters

. Logic—an algorithm that best estimates the placement of physical data locality

to minimize or eliminate future data movement within the data region

. Control Commands—the ability to manage data movement in the data grid to

manually tune system performance

The “control commands” can be manual, involving people analyzing “macroscale”

data patterns and manually redistributing data over long periods of time. Alterna-

tively, the process can be automated via a programmatic analytical process causing

“microscale” data distributions and redistributions over short periods of time.

Finally, a combination of both automated (microscale) and manual (macroscale)

data distributions may be used.

2. Implied Properties of Data Distribution. A number of implied properties of

data distribution are important to system behavior, including the distribution policy

and its interactions with other policies, data management features, and the external

systems. The implied properties that affect the abovementioned system behaviors are

. Locality—the position of the data atom.

. Manipulation of the data atom position.

. Query of the data atom position.

. Distribution policy that includes all data atoms and their replicas.

3. Locality. The data distribution policy implies an intimate knowledge of the

exact location of each data atom (including its replicas) in the data region. This is

key to the successful implementation of any data distribution policy. The data dis-

tribution policy determines where each of the data atoms is to be physically located

in the data region. Knowledge of exactly where a data atom resides will result in an

efficient use of the network resource, since data atom movement will be minimized

during the operation of or access to data in the region by the applications or services

it supports. This concept is known as data affinity, which will be addressed in the

chapters that follow.

4. Inclusion of Replicas. The distribution of data in a data region must also

include all the data atoms and the replicas as determined by the data replication

86 DATA REGIONALIZATION

policy. Only in this way can maximum data affinity and data grid resilience (data

grid high availability) be achieved.

5. Location Manipulation. Data distribution policy inherently implies that

implementation will provide the ability to manipulate the exact physical location

of each data atom in the data region.

6. Query of Locality. To implement the data management policies of a data grid

and support a full range of data management features, data affinity, for example, all

the administrative attributes of a data atom must be known and can be managed.

These attributes include physical location in the data region as well as history of

data movement (location and time of access).

Data Distribution Policy Expression. The data distribution expression defines the

key parameters for the distribution of data atoms within a data region identified in

the formula

DataDistributionPolicy ¼ DDP

PolicyName,

Region,

Scope(),

Pattern()

2

6

6

4

3

7

7

5

where

. PolicyName ¼ logical name for this policy. This is the logical name for this

instance of a data distribution policy. Since there may be many distribution

policies, this name provides a unique identification. Depending on the

implementation of the data grid, this name may or may not be unique.

. Region ¼ primary region name. This is the primary data region to which this

data distribution is applied. A data distribution of identical characteristics

[as determined by the Scope() and Pattern() attributes] can be applied to

other regions in the data grid.

. Scope() ¼ F(All, List(DataAtoms) ¼ NULL). The scope of the data distri-

bution can span the entire data region as indicated by the “all” attribute or

apply only to a specific range of data atoms identified in the supplied list.

Note that these parameters are mutually exclusive.

. Pattern() ¼ Function(Automatic/Specified, DP()), where

DistributionPolicy ¼ F

PatternName,

DeployPattern(),

DataAtom;

Currentlocation,

NewLocation,

Move=Add=Delete

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

This distribution pattern is used to apply to the data atoms identified in the Policy’s

Scope(). The pattern can be automatic in nature, one that follows a predetermined

DATA MANAGEMENT IN A DATA GRID 87

mathematical principle such as randomness or Gaussian distribution. In this case,

the pattern expression is the DeployPattern() parameter and the parameters of data

atom, including its current and new locations, and operation (Move/Add/Delete)
are not required. The second option is to manipulate the exact physical location of

a specific data atom manually. In this case, the DeployPattern() parameter is not

required. However, the parameters of the data atom, including its location (current

and new), and operation (Move/Add/Delete) are essential.

Data Replication Policy

Within a data region, data atoms are distributed on the basis of policies. The distri-

bution policies can be grounded in mathematical formula or heuristic usage patterns

of data movements within the data region through time. The distribution policy

determines the physical location where each data atom will be cached within the

data region. The data replication policy goes hand in hand with the data distribution

policy. Data replication addresses the number of “copies” of a data atom that exist

within a data region.

Both the data distribution and the replication policies should be statistically tied

to the physical size of the data grid; or, more specifically, to the physical size of the

data region within the data grid. The physical size of the data region—for example,

in a peer-to-peer topology—is the number of compute nodes assigned to a data

region. The number of nodes that can execute the tasks of a service or services

supported by the data region determines the physical size of a data region.

(Note: More sophisticated data regions can be constructed and maintained to span

nodes where there is no intersection of task execution capability. However, for

this discussion we will consider only the simple case of the intersection of nodes

to execute tasks for a single or multiple services.) Therefore, the maximum size

of a data region is the entire grid of T nodes. Typically, as the grid grows to support

more services, the data region size will be R number of nodes less than or equal to

those of T. As R increases in number, a sophisticated model (e.g., statistical, heur-

istic) for data distribution policy becomes possible and preferable. Also, the data

replication policy can not only reflect the size R of the region but also take into

account the geographic/network topology that the data region spans. As the data

region size R shrinks to a minimum of one or two nodes, the data distribution

policy begins to look like the data replication policy.

The combination of data distribution and replication policies characterizes the

data region’s ability to support a task or service with minimal data movement and

thus minimum network traffic with a region; adding in the data synchronization

policy, the robustness of the data region to any failures is then defined.

Figure 9.3 shows an example of a modified data atom synchronized with its

peers and replicas. This is not to suggest that all data synchronization relation-

ships represent a single master/replica orientation. Various data atom synchro-

nization relationships can be supported as part of the data synchronization

policy.

88 DATA REGIONALIZATION

Data Replication Policy Expression. The data replication policy expression defines

the key parameters for the replication of data atoms within a data region. The

expression can be expressed as

DataReplicationPolicy ¼ DRP

PolicyName,

Region,

Quantity,

Scope()

2

6

6

4

3

7

7

5

where DRP is the data replication policy. The following parameters influence the

policy:

. PolicyName ¼ logical name for this policy. This is the logical name for this

instance of a data replication policy. Depending on the implementation of the

data grid, this name may or may not be unique.

Data atom

Data replication policy

mandates 4 replicas of the

data atom

Data synchronization policy

is pessimistictransactional

between the data atom and its

replicas that are distributed

across the data region

Data region

Data distribution policy

The data atom replicas are

distributed throughout the data

region following a Gaussian

distribution formula

Figure 9.3. Relationship between data replication, distribution, and synchronization policies.

DATA MANAGEMENT IN A DATA GRID 89

. Region ¼ primary region name. This is the primary data region to which this

data replication policy is applied. A data replication policy of identical charac-

teristics [as determined by the Scope() and Quantity() attributes] can be

applied to other regions in the data grid.

. Quantity ¼ number of replicas. This is the number of replicas that a data atom

will have in the data region.

. Scope() ¼ F(All, List(DataAtoms) ¼ NULL). Another function, Scope() of

the data replication policy, can apply to all the data atoms of the entire data

region as indicated by the All attribute or apply only to a specific range of

data atoms identified in the supplied list. Note that these parameters are

mutually exclusive.

Synchronization Policy

Synchronized regions ensure that all data “atoms” associated with a particular region

are available everywhere. Replication of data “atoms” falls into replicating all or

replicating a subset of categories. Total replication assumes that all the data for

the region is available and copied everywhere. Partial replication combines a distri-

bution policy, such as a round-robin distribution, with total replication of some data

“atoms.” Synchronization policy is discussed in more detail in a later chapter.

Load-and-Store Policy

A load-and-store (load/store) policy is needed when data are integrated from data

sources external to the application data region. These external sources can include

other data regions, legacy systems, databases, middleware (i.e., messaging), and

files. The data load policies will define how and when data are to be obtained for

the data region, for example, whether the data are to be “preloaded” or “loaded

on demand.” The data store policies will determine when and how data are to be

pushed out of the data region to the appropriate external data destinations, for

example, persisting to an external database. Data store policies can be transactional

as well as nontransactional. Both load and store policies can also follow a data

distribution policy.

One way to think of the data load/store policies is as an interregion synchroni-

zation policy. Virtualization of the external data sources and the interaction proper-

ties of those data sources allows the application that is running in synchronization to

behave similarly to the synchronization policies of the data region. One must take

into account whether the external data sources support such policies. A load/store
policy is needed when data are integrated from data sources external to the appli-

cation and its associated data regions. Those external sources that require load

and/or store could include

. Other data regions

. Legacy systems

90 DATA REGIONALIZATION

. Databases

. Middleware (i.e., messaging)

. Files

. Custom APIs

The data load policies will define how and when data are to be brought into the

data region. Examples of data load policies are:

. Preloaded—load the data region with the external data before the application

needs it.

. Load on demand—data from the external source are to be loaded to the data

region on request from the application.

The data store policies will determine how and when data are to be pushed out of

the data region to the appropriate external data source or sources. For example

. Store all—all or portions of the data in the data region is predefined for storage

to the external systems with the data remaining in the data region after the store

operation is executed.

. Store on demand—specific data atoms in the data region are stored or copied to

the external systems as the application requires. The data remain in the data region

after the operation completes. In this situation, the application controls the storage.

. Purge—data atoms are removed from the data region.

There are a number of implied properties to data load/store policies, including

. Granularity

. Grouping/frequency

. Invocation

Granularity. One property of the data load/store policies is granularity. Note

that there are policy attributes that define just how many atoms are to be

loaded into and stored out of the data region. The “xxx on demand” policy

attribute implies a varying level of granularity from the smallest data atom

to a grouping of any size as defined by the application. The “xxx-all” policy

attribute implies that the data pertaining to a specific external system are to

be loaded into or out of the data region in a complete block.

Grouping/Frequency. The mechanics of data load and store into and out of the

data region involve, either as directed by the application or transparent to the

application, when the operation physically is to take place. Each invocation of

a load or store (typically for the “on demand” operations) can be done one at a

time, or the policy can define a store-and-execute strategy that will group loads

DATA MANAGEMENT IN A DATA GRID 91

and updates for execution at a later time. This strategy is particularly useful for

performance optimizations when

Data atoms are fine-grained

The frequency of the load/store operations are greater than the time period of

the external system’s ability to transact the operation

Invocation. A third implied property of the data load and store policies is the

invocation of the required enterprise information integration (EII) or enter-

prise application integration (EAI) adapters. The policies must tie the data

atom grouping and manage the invocation of the physical data movement

into and out of the region via the respective adapters.

Just as there is a relationship between data distribution and replication policies,

there is a relationship between data synchronization and data load/store policies.

Figure 9.4 illustrates this relationship.

The data management policies of the data grid are interconnected. The data

synchronization policy determines the transactional level of the system, and the data

Data

synchronization

policy

Data

load/store

policies

Transactional levels

* Pessimistic

Granularity of data movement

 * Fine (data atom level)

group updates)

Mechanical method / implementations

of load and store

(EII adapters)

Relationship

In
vo

ke
s

S
upports

* Optimistic
* Coarse (store and

Figure 9.4. Data synchronization and load/store policy relationship.

92 DATA REGIONALIZATION

load/store policies define the granularity and frequency of the process. There is, how-
ever, a third part of the equation: the EAI/EII adapter. The adaptor must be able to sup-

port the synchronization policy set in the region. For example, if the synchronization

policy is optimistic but the EII adapter is a XA transactional, then there is a policy/
implementation impedance mismatch. The end result is a system behavior that will

not meet the application requirements for data management, performance, and

throughput. The physical implementations must support the data management

policy set in order for the data grid to operate properly in accordance with the set

policies.

Data load/store policies are integral parts of enterprise information integration

and are discussed in more depth in a later chapter.

Data Load Policy Expression. The data load policy expression defines the key

parameters for loading data into a data region from external sources:

DataLoadPolicy ¼ DLP

PolicyName,

Region,

Granularity(),

Adapter()

2

6

6

4

3

7

7

5

where

. DPL is the data load policy function.

. PolicyName ¼ logical name of this policy. This is the logical name for this

instance of a data load policy. Depending on the implementation of the data

grid, this name may or may not be unique.

. Region ¼ primary region name. This identifies the primary data region to

which this data load policy is applied. A data load policy of identical charac-

teristics—as determined by the Granularity(), Scope(), and Operation()

attributes—can be applied to other regions in the data grid.

. Granularity ¼ F(Grouping(), Frequency()). The granularity of a data load is

defined by the parameters of grouping and frequency. The Grouping()

parameter defines the number of updates that are to be grouped in the data

region as a result of queries before the queued updates are applied to the

data region. The Frequency() parameter indicates the minimum frequency

or time interval for data load into the data region. Both the grouping and

frequency parameters can be static numbers and user-defined functions

based on application/service requirements for data load. A Frequency() of

zero identifies a one-time data load into the data region, thereby preloading

the data region. Frequency of any other value (negative values do not

apply) indicates a load on demand operation (e.g., a frequency of 2 means

updating every 2 s).

. Adapter() ¼ EIIAdapter(. . .). The Adapter refers to the physical enterprise

integration information (EII) or enterprise application integration (EAI)

DATA MANAGEMENT IN A DATA GRID 93

adapters that will physically perform the loading of data into the data region.

Included in these adapters can be the data atom schema and translation logic

from the external source into the data atom of the region being loaded. The

parameters of the EIIAdapter() attribute can vary from adapter to adapter

implementation as required to perform the required function.

Data Store Policy Expression. The data store policy expression defines the key

parameters for loading data into an external data store:

DataStorePolicy ¼ DSP

PolicyName,

Region,

Granularity(),

Operation(),

Adapter()

0

B

B

B

B

@

1

C

C

C

C

A

where

. DSP is the data store policy function.

. PolicyName ¼ logical name of this policy. This is the logical name for this

instance of a data load policy. Depending on the implementation of the data

grid, this name may or may not be unique.

. Region ¼ primary region name. This is the primary data region to which this

data store policy is applied. A data store policy of identical characteristics

[as determined by the Granularity(), Scope(), and Operation() attributes]

can be applied to other regions in the data grid.

. Granularity ¼ F(Grouping(), Frequency()). The granularity of a data store is

defined by the parameters of grouping and frequency. The Grouping() para-

meter defines the number of updates to be exported out of the data region

that are to be queued before the queued exports are applied. The Frequency()

parameter indicates the minimum frequency or time (maximum time interval)

with or during which any data export out of the data region must occur.

Both the Grouping() and Frequency() parameters can be static numbers and

user-defined functions based on application/service requirements for data

store. A Frequency() of zero identifies a one-time data export out of the data

region. A frequency of any other value (negative values do not apply) indicates

a store on demand at a defined interval.

. Operation ¼ F(Store/Purge). This defines the resulting state of the data region
after a data atom has been exported. Store() leaves the data region populated

with the data atom in the last known state at the time of the store. The

Purge() attribute deletes the data atom from the region after it has been stored.

. Adapter() ¼ EIIAdapter(. . .). The Adapter() refers to the physical EII, or EAI

adapters that will physically perform the export of data out of the data region.

Included in the adapter can be the data atom schema and translation logic

from the data atom to the external source to which the data are being exported.

94 DATA REGIONALIZATION

The parameters of the EIIAdapter() attribute can vary among implementations

as required, thus meeting the required functions.

Event Notification Policy

Event notification policy is a common paradigm—a tool common to real-time event

processing or straight-through processing (STP). Most databases and middleware

products support event notification in someway. Databases support event notification

through “triggers.” The triggeringmechanismmonitors the state of a database at vary-

ing degrees of granularity: a table within a database, a row within a table, or a field

within a row. When a monitored entity changes state (due to an event that modifies

its state, via an insert, update, or delete action), the database will toggle all “registered

triggers” for this event, which will execute the respective registered triggered

operations. These operations are typically user-defined. The trigger passes into the

user-defined operation (or function) that describes, in detail, what event invoked the

trigger. Typical examples of triggers and corresponding user-defined functions are:

. Internal database operations when a row in table A is deleted. The first thing

that happens is to find the rows in related tables for which this action effects

and then take the appropriate action to other tables maintain referential.

. External operations to database: user-defined programs that will cause a

cascade of events or state changes to systems external to the database.

In straight-through processing, or more specifically with message-based middle-

ware, which is a concept of publish and subscribe, an external program will

“subscribe” to a published event in the middleware. Any single published event

can have many subscribing programs. The published event may trigger cascading

events by the invocation of all subscribed programs.

Similarly, within the data grid, event notification plays an integral role. When a

data region’s state has changed, the following could occur:

. A data atom is added to or deleted from a data region.

. A data management policy is changed.

. A data atom is changed.

Other data regions within the data grid, applications/services, or legacy systems,

can register interest in order to be notified should an event take place. The event

notification policy is a standard interface that describes how events are to be handled

within the data region. Some of the key parameters described via the event

notification policy are the events themselves. Programs can register interest in

events, and exactly how the invocations are to be managed.

As with the data load and data store policies, event notification policy is an

integral part of information integration into and out of the data grid. This will be

discussed in more detail in a later chapter.

DATA MANAGEMENT IN A DATA GRID 95

Event Notification Policy Expression. The event notification policy expression

defines the key parameters for the management of events within a data region:

EventNotificationPolicy ¼ ENP

PolicyName,

Region(),

Scope(),

Operation()

0

B

B

@

1

C

C

A

where

. ENP is the event notification policy.

. PolicyName ¼ logical name for this policy. The PolicyName is the logical

name for this instance of an event notification policy. Depending on the

implementation of the data grid, this name may or may not be unique.

. Region ¼ primary region name. This is the primary data region to which this

policy is applied. An event notification policy of identical characteristics

[as determined by the Scope() and Operation() attributes] can be applied to

other regions in the data grid.

. Scope() ¼ F(All, List(DataAtoms) ¼ NULL). The Scope() of the event notifi-

cation policy can be applied to the data atoms of the entire data region as indi-

cated by the All attribute or apply only to a specific range of data atoms

identified in the supplied list. Note that these parameters are mutually exclu-

sive.

. Operation ¼ F(). This is the user-defined function to be invoked on the

occurrence of an event.

QUALITY-OF-SERVICE (QoS) LEVELS

Throughout the our discussions on data grid—and its management policies of

synchronization, distribution, replication, and load and store—we will be using

the terms quality of service (QoS) and QoS levels. The objective of a distributed

data management system, through its data management policies, is to provide a

level of end-user support found with traditional data management systems. It is

necessary to identify QoS levels on the basis of application requirements when

both the business applications and services are running in a distributed grid comput-

ing environment. Various categories of QoS levels must be accounted for, including

. Service availability

. Service performance

. Geographic boundary (desktop, data center, cross data center, etc.)

. Data management

. Others

96 DATA REGIONALIZATION

Our discussions will focus on the QoS levels for data management. Some of the

QoS features for data management in grid are computing

. Traditional data management service levels, such as support for transactions,

query, and embedded logic (i.e., stored procedures).

. Data grid management service levels—for example, regionalization and

synchronization.

There are numerous ways to implement the data grid, depending on the user

application’s requirements as well as the level of service that it demands from a

data management system in order for it function properly; this will determine the

type of data grid and the QoS level that the data grid must provide.

In Chapter 5 we discussed ways in which to express an application in an equation

format via the definition of its parameters and to quantify its data management needs

(QoS levels) for the data grid.

The definition for an application in a distributed environment is

Application(Work(), Data(), Time(), Geography(), Query())

where the various functions can have the following parameters:

Work(batch=atomic, synchronous=nonsynchronous)

Data(overallsize, atomicsize, transactional, transient, queryable)

Time(Real-Time, NotReal-Time, NearReal-Time)

Geography(Topology, NetworkBandwidth)

Query(basic, complex)

This equation is broken up into functions: Work(), Data(), Time(), Geography(),

and Query(). Each of these parameters quantifies a level of service that a data

grid must provide to support the service or application. The QoS level that a data

grid provides is determined by its management policies within the data region.

These policies are mentioned in this chapter, but will be discussed in more detail

in the chapters to follow.

As with most service-oriented architectures, the service is judged by the custo-

mer’s satisfaction level as a result of using the service. The most fundamental

aspect to customer satisfaction is the service’s ability to meet the business need.

However, there are additional key factors necessary to measure customer

satisfaction, such as

. Availability when needed during peak as well as off-peak times

. Cost of the service

. Performance time to run the service

Therefore, the responsibility of the data grid is to meet the QoS demands on all

levels in order to accommodate and manage the overall customer experience.

QUALITY-OF-SERVICE (QoS) LEVELS 97

